56 research outputs found

    Antisense expression of a gene encoding a calcium-binding protein in transgenic tobacco leads to altered morphology and enhanced chlorophyll

    Get PDF
    Entamoeba histolytica contains a novel calcium-binding protein like calmodulin, which was discovered earlier, and we have reported the presence of its homologue(s) and a dependent protein kinase in plants. To understand the functions of these in plants, a cDNA encoding a calcium-binding protein isolated from Entamoeba histolytica (EhCaBP) was cloned into vector pBI121 in antisense orientation and transgenic tobacco plants were raised. These plants showed variation in several phenotypic characters, of which two distinct features, more greenness and leaf thickness, were inherited in subsequent generations. The increase in the level of total chlorophyll in different plants ranged from 60% to 70%. There was no major change in chloroplast structure and in the protein level of D1, D2, LHCP and RuBP carboxylase. These morphological changes were not seen in antisense calmodulin transgenic tobacco plants, nor was the calmodulin level altered in EhCaBP antisense plants

    Classification of drugs reviews using W-LRSVM model

    Get PDF
    Opinion mining provided less opportunity to discuss their experiences about drugs so reviewing about it was difficult. Recent findings show that online reviews and blogs on drugs are important for patients, marketers and industries. Collecting the information for drugs from the website and analyzing is a challenge. A model is designed by proposing an algorithm which crawls information from the web to analyze reviews of drugs. Reviews were crawled for five different drugs using the algorithm. The W-Bayesian Logistic Regression and Support Vector Machine (W-LRSVM) model was trained for different split ratios to obtain the accuracy of 97.46%. Experimental results on reviews of five different drugs showed that the proposed model gave better results compared to other classifier

    Successfully treated synchronous double malignancy of the breast and esophagus: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>The incidence of multiple primary cancers is reported to be between 0.3% and 4.3%. The second primary lesion is identified either simultaneously with the primary lesion (synchronous) or after a period of time (metachronous). Few cases of metastasis of breast carcinoma to the esophagus and vice versa have been reported in the past.</p> <p>Case presentation</p> <p>We report an extremely rare case of a 55-year-old Indian woman who had carcinomas in both the esophagus and the breast simultaneously. She was treated successfully using combined modalities of surgery, chemotherapy and radiation therapy.</p> <p>Conclusion</p> <p>Cases of synchronous double malignancies can be treated by dealing with the malignancy in the two sites as independent carcinomas. We have to take into consideration the total dose of radiation to a critical organ as well as the effect of the total dose of toxic chemotherapeutic drugs on our patient.</p

    Development of Novel Octanoyl Chitosan Nanoparticles for Improved Rifampicin Pulmonary Delivery: Optimization by Factorial Design

    Get PDF
    A novel hydrophobic chitosan derivative, octanoyl chitosan (OC) with improved organic solubility was synthesized, characterized, and employed for the preparation of rifampicin (Rif) encapsulated nanoparticle formulations for pulmonary delivery. OC was characterized to confirm acyl group substitution and cytotoxicity in A549 epithelial lung cells. OC nanoparticles were produced by the double emulsion solvent evaporation technique without cross-linking and characterized for particle size distribution, morphology, crystallinity, thermal stability, aerosol delivery, and drug release rate. OC was successfully synthesized with substitution degree of 44.05 ± 1.75%, and solubility in a range of organic solvents. Preliminary cytotoxicity studies of OC showed no effect on cell viability over a period of 24 h on A549 cell lines. OC nanoparticles were optimized using a 32full factorial design. An optimized batch of OC nanoparticles, smooth and spherical in morphology, had mean hydrodynamic diameter of 253 ± 19.06 nm (PDI 0.323 ± 0.059) and entrapment efficiency of 64.86 ± 7.73% for rifampicin. Pulmonary deposition studies in a two-stage impinger following aerosolization of nanoparticles from a jet nebulizer gave a fine particle fraction of 43.27 ± 4.24%. In vitro release studies indicated sustained release (73.14 ± 3.17%) of rifampicin from OC nanoparticles over 72 h, with particles demonstrating physical stability over 2 months. In summary, the results confirmed the suitability of the developed systems for pulmonary delivery of drugs with excellent aerosolization properties and sustained-release characteristics. © 2018, American Association of Pharmaceutical Scientists

    Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition)

    Get PDF
    In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. For example, a key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process versus those that measure fl ux through the autophagy pathway (i.e., the complete process including the amount and rate of cargo sequestered and degraded). In particular, a block in macroautophagy that results in autophagosome accumulation must be differentiated from stimuli that increase autophagic activity, defi ned as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (inmost higher eukaryotes and some protists such as Dictyostelium ) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the fi eld understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. It is worth emphasizing here that lysosomal digestion is a stage of autophagy and evaluating its competence is a crucial part of the evaluation of autophagic flux, or complete autophagy. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. Along these lines, because of the potential for pleiotropic effects due to blocking autophagy through genetic manipulation it is imperative to delete or knock down more than one autophagy-related gene. In addition, some individual Atg proteins, or groups of proteins, are involved in other cellular pathways so not all Atg proteins can be used as a specific marker for an autophagic process. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field

    Role of Proteases in Chronic Obstructive Pulmonary Disease

    No full text
    Chronic obstructive pulmonary disease (COPD) is generally associated with progressive destruction of airways and lung parenchyma. Various factors play an important role in the development and progression of COPD, like imbalance of proteases, environmental and genetic factors and oxidative stress. This review is specifically focused on the role of proteases and their imbalance in COPD. There are three classes (serine, mettalo, and cysteine) of proteases involved in COPD. In serine proteases, neutrophil elastase, cathepsin G, and proteinase-3 are involved in destruction of alveolar tissue. Matrix-mettaloproteinase-9, 12, 13, plays an influential role in severity of COPD. Among cysteine proteases, caspase-3, caspases-8 and caspase-9 play an important role in controlling apoptosis. These proteases activities can be regulated by inhibitors like α-1-antitrypsin, neutrophil elastase inhibitor, and leukocyte protease inhibitor. Studies suggest that neutrophil elastase may be a therapeutic target for COPD, and specific inhibitor against this enzyme has potential role to control the disease. Current study suggests that Dipeptidyl Peptidase IV is a potential marker for COPD. Since the expression of proteases and its inhibitors play an important role in COPD pathogenesis, therefore, it is worth investigating the role of proteases and their regulation. Understanding the biochemical basis of COPD pathogenesis using advanced tools in protease biochemistry and aiming toward translational research from bench-to-bedside will have great impact to deal with this health problem

    Cavitary mucoepidermoid carcinoma of lung with metastases in skeletal muscles as presenting features: A case report and review of the literature

    No full text
    Mucoepidermoid carcinomas (MECs) of lung are rare neoplasms originating in bronchial submucosal glands and comprising 0.1-0.2% of primary lung cancers. MECs, the most common malignancy in salivary glands, were earlier thought to occur only in salivary glands. Later studies showed that they can arise as a primary in bronchus, esophagus, lacrimal glands, pancreas, thymus and thyroid gland. Initially described as a benign adenoma, it is now considered to be a malignant epithelial tumor. There have been reports of metastases to regional lymph nodes, other parts of the lung and distant organs. Cavitary lesion in MEC of lung is rare. Here, we report a case of MEC of lung with metastases to skeletal muscles of thigh and arm. To the best of our knowledge, this is the only case of MEC of lung presenting with such unusual pattern of metastasis as presenting feature with almost no symptoms of primary lesion

    Molecular Dynamics Simulations of Deformation Behaviour of Gold Nanowires

    No full text
    Metallic nanowires show great potential for applications in miniaturization of electronic devices due to their extraordinary mechanical strength and electrical properties. Experimental investigations of these properties are difficult due to their size and complications in performing experiments at such length scales. Computational techniques based on classical molecular dynamics simulations (using LAMMPS) provide an effective mean to understand the mechanical deformation behaviour of such nanowires with considerable accuracy and predictability. In the present investigation, we have discussed the deformation behaviour of Au nanowires due to tensile loading using classical molecular dynamics simulations (LAMMPS). The effect of strain rate and temperature on the yield strength of the nanowire has been studied in detail. The deformation mechanisms have also been discussed
    corecore